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I. INTRODUCTION

HEART murmurs in children are incredibly com-
mon (up to 80% [1]) and can imply many heart

conditions. Although most of these cases are completely
harmless (innocent), some may be a sign of an underly-
ing problem with a heart or blood flowing through the
heart faster than usual. The former is in definite need
of being checked, however, the latter can be explained
by growing too quickly, an overactive thyroid, having
a fever or a more serious condition like anaemia or
untreated high blood pressure. Recognising the signs of
a heart murmur is challenging, given their often generic
symptoms including dizziness, shortness of breath, chest
pain, and fatigue, which could go undiagnosed into or
after their adolescent years [2]. Accompanying these less
extreme symptoms, people who suffer from heart pal-
pitations can experience swelling, continuous coughing,
and growth problems. Although some of these patients
may have innocent heart murmurs with no underlying
heart problems, doctors can also prescribe treatments to

some cases to manage the effect of the symptoms on the
individual[3].

This model hopes to allow children to be routinely
pre-screened for heart murmurs before seeking help from
professionals on whether the murmur is a harmless sound
or a sign of a more severe condition. Not only would
this streamline the diagnostic process and optimise re-
source allocation on strained health services, but it could
also catch cases of abnormal heart murmurs intervening
before the potential condition can worsen, and allow
doctors to give the right treatments to manage symptoms.

This report will introduce a novel approach to clas-
sifying systolic heart murmurs in children, by using a
combination of dynamic time warping and K-Nearest-
Neighbours. It will describe and evaluate the efficacy of
the model based on current approaches to this classifi-
cation task.

A. Background

Heart murmurs can be characterised as an extra sound
in the heart caused by turbulent blood flow through a
valve [4]. These extra sounds can be heard throughout
the whole cardiac cycle, named a continuous murmur, or
only in certain phases of the cardiac cycle.

Systolic heart murmurs can be heard in the contraction
phase of the heart and can be subdivided into ejection
murmurs and regurgitant murmurs. The systolic phase
of the heart cycle is between the strong and weaker
beats making up the ”Lub-Dub”(S1-S2) sound heard (as
shown in Fig. 1). Ejection murmurs are caused by narrow
vessels or an irregular valve, and regurgitant murmurs are
categorised by the backward flow of blood into chambers
of the heart[5]

Diastolic heart murmurs, however, are found after the
weaker beat of the heart or between the S2 to the next
cycle’s S1 (as shown in Fig. 1), when the heart is in
relaxation. These can be categorized by a narrowing
of the mitral or tricuspid valves, or regurgitation by
the aortic or pulmonary valves[5]. Since this project
is solely based on the classification of systolic heart
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murmurs, this report will not go into any more depth on
the diastolic murmurs, as if this model is successful in
classifying systolic murmurs, the diastolic classification
should follow simply.

Along with being categorised by the timing, the mur-
murs can also be categorised by shape (as shown in Fig.
2) and grading from I to V[6]:

• Grade I - Not immediately heard
• Grade II - Soft, but immediately heard
• Grade III - Loud, but no thrill
• Grade IV - Associated with a thrill
• Grade V - Heard with the edge of the tilted stetho-

scope
• Grade VI - Heard with the stethoscope lifted away

from the chest wall
All of these characteristics as well as pitch and quality

are represented in the dataset chosen for this classifica-
tion model.

Fig. 1. The cardiac cycle[7].

B. Dataset

The dataset ”The CirCor DigiScope Phonocardiogram
Dataset” from PhysioNet is a vast dataset of 1568
patients from age 0 to 21. The dataset includes both
healthy individuals and those with both systolic and
diastolic heart murmurs. Audio recordings were taken of
the patients at four areas located on the chest surrounding
the heart. These four areas are the areas associated with
the four valves of the heart (see Fig. 3). The subjects’

Fig. 2. Systolic murmur shapes[8].

data were recorded as part of two screening campaigns
in Brazil in 2014 and 2015, and were examined by an
expert paediatric cardiologist. When needed, the experts
could request to see the patient in person, if there were
any doubts before coming to a diagnosis [9].

Fig. 3. Four areas for recording or listening to heart murmurs[10].

The data is represented in audio (wav) files and text
files containing the patient data and diagnosis infor-
mation. The data recorded from patients are age (in
categories shown in Table I), sex, type of murmur (nan,
systolic, or diastolic), locations of where this murmur is
heard (the four valve positions), and the outcome of the
diagnosis (Normal/Abnormal). Along with this, there is
some other information about the characteristics of the
murmur, which is less important for this project as this
aims only to sense if there is a murmur present.

The vast size of the dataset is a huge benefit for
this type of classification model, however, the audio
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Age Label Numerical Value
Neonate 0 to 27 days
Infant 28 days to 1 year
Child 1 to 11 years

Adolescent 12 to 18 years
Young Adult 19 to 21 years

TABLE I
AGE LABEL COMPARED TO NUMERIC VALUE OF DATASET [9]

files themselves are of varying quality. This is, however,
real-world data, and for the model to work in real
applications, there is an expectation for it to perform well
under varying and overly noisy environments. The audio
data too is standardised to have a sampling rate of 4kHz
as most audio information above the Nyquist frequency 1

(2kHz) can be neglected for these recordings[8]. Despite
the sampling rate being standardised, the length of the
recorded data is vastly varied, and the noise of the signals
is inconsistent even within samples. The noise originates
from several sources noted in the dataset, including the
stethoscope rubbing on skin, speech, crying and laughing
sounds[9].

With this vast dataset of varying quality, the focus is
now to make sense of the varying quality in terms of
audio preparation and model design.

II. MODEL DESIGN

The design process of this model is split into two
separate stages: audio preparation, and classification. The
large amount of audio data (above 400MB) needs to be
made comprehensible, by negating all of the overly noisy
data that may influence the classification step, and stan-
dardise the length of the audio. Due to processing power
constraints, there have been some necessary measures to
improve efficiency, however, this introduces a trade-off
in the model’s accuracy against the speed at which it can
classify the test set.

A. Data and Audio Preparation

Dataset preparation is extremely important, as al-
though ”all entries were screened for incorrectly en-
tered or measured values, inconsistent data or outliers,
and deleted as appropriate”[9], there were still some
classifications by professionals, such as an ”Unknown”
diagnosis, that could hinder the performance of the
model.

As mentioned in the previous section, the patient’s
data is stored in text files with references to the audio
files accompanying them. The diagnosis of the patient

1This is the largest frequency able to be properly represented by
the sampling rate due to sampling theory [11]

is given as ”Abnormal” or ”Normal”, and the murmurs
are given as ”Present” or ”Absent”. The categories of
”Present-Normal” and ”Absent-Abnormal” are too vast
in the dataset to ignore, as these quantities are above
the human error rate of 1% at 3.08% and 27.92%
respectively [12]. Therefore, in this classifier, the model
will group any ”Present-Normal” or ”Absent-Abnormal”
with the ”Present-Abnormal” as this is proposed as a
preliminary screening before expert diagnosis. On top of
that, there are 7.22% unclassified murmur types which
have been removed altogether from the training and test
set. The data also has mostly the child age group of 1
to 11 years at 70.49% and an almost even sex split of
51.59% to 48.41% (Female to Male).

Following the flowchart Fig. A.1, the text files for
all the patients are collected and filtered for only the
Children (aged 1-11 years) and the sex of the patients
under test. This filtering also excludes any ”Unknown”
or unclassifiable records from the dataset. When the
patient’s text files are obtained, the bias of classified
positive to negative is negated so that there is a 50/50
split of ”Absent-Normal” diagnoses to an otherwise
positive classification. This bias is removed at random
and will only attempt to make the patient data equal in
quantity, there will be a small amount of random bias
left (as can be seen in Fig. A.5, and A.6). The dataset is
then split randomly into 85% training samples and 15%
testing samples. Note that this is the percentage of the
patient data, not the audio files or the cardiac periods
extracted from the files. For each of the patients, all
relevant audio files are collected (in the case where a
murmur is present, all audio files where a murmur can
be heard are selected). The next step is the collate the
audio files for the testing and training sets and prepare
the training set in the audio preparation stage.

Due to the noisiness of the data, finding individual
periods of audio using onset detection is relatively dif-
ficult. As seen in the flowchart Fig. A.2 this is still
attempted with varying results, as will be explained in
the evaluation section below.

The audio file to be separated into cardiac periods is
gathered and the starting threshold is set (0.8) and the
end threshold is also set (0.5). The minimum number of
acceptable cardiac periods per audio sample to extract is
set to 5, as during testing this seemed most reasonable
(there is, of course, no upper limit). The audio then
goes through a low-pass filter to attempt to isolate the
heart’s S1 and S2 sounds. The cut-off frequency on this
filter is set to the maximum valid resting heart rate for
the age of the patient. After re-scaling (−1 to 1) to
normalise the audio, the model gathers the Mel Spectral
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data to calculate the Spectral Flux2 of the signal. This
signal is highly noisy still, so a second low-pass filter is
applied to this signal, and the outliers are filled with the
previous values. After taking an absolute value and re-
scaling between 0 to 1, the onsets are calculated using
the starting threshold. If the time between subsequent
onsets are valid cardiac period times for the age of the
patient, this period is saved. After iterating through the
whole audio file and finding which onsets are valid, the
algorithm checks whether there are more periods than
the minimum number required. If there are not enough
periods, the algorithm lowers the threshold by 0.1 until
it reaches the ending threshold or until the minimum
required periods are attained. Finally, the audio is down-
sampled to increase the speed of the Classification algo-
rithm and to save storage space.

The training set is then made up of all of the periods
and labelled accordingly with their diagnoses in the
audio filenames. This is then where the model can use
this database to classify and calculate the effectiveness
using the previously split testing set.

B. Classification

The audio being incredibly noisy and hard to diagnose
by professional doctors, preliminary metrics were con-
sidered before Dynamic Time (DTW). These included
Root Mean Square Energy, Zero Crossing Rate, and
Signal to Noise Ratio. However, when plotting these
three metrics in any configuration against each other, the
classification is clear to be highly inaccurate (see Fig.
4, 5, and 6) due to the high density and no apparent
clustering or separation of the data. Hence, Dynamic
Time Warping was the chosen metric for classification
due to the possibility of some improvement to random
guessing.

DTW, as defined by the following equation:

DTWq(x, x
′) = min

π∈A(x,x′)

〈
Aπ, Dq(x, x

′)
〉 1

q (1)

can be described as the Euclidean distance with the
use of time-domain elongation and compression. This
is shown in Fig. 7, where the samples are compared in a
non-linear way. The sample in either signal can be ”held”
(although not both at the same sample) to compare to
the next sample of the signal in comparison. Iterating
through all the combinations is an expensive operation,
especially when then iterated through all the audio in the
training set, for every test sample. DTW has a big-O of
O(N2), hence the need to down-sample the audio for this
much data[15]. Using DTW allows the model to mitigate

2The spectral change between frames[13]

Fig. 4. Root Mean Square Energy against Signal to Noise Ratio for
the dataset.

Fig. 5. Root Mean Square Energy against Zero Crossing Rate for
the dataset.

Fig. 6. Signal to Noise Ratio against Zero Crossing Rate for the
dataset.
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the heart rate period in comparison and subtle individual
differences across patients when making a classification.

Fig. 7. Dynamic Time Warping Graphical Representation[15].

Classification by K-Nearest-Neighbours (KNN),
seemed to best fit the way the data had been split into
periods. KNN uses the closest K entries in the training
set to the test sample, gathers these classification labels,
and on a voting system predicts the class of the test
sample. This can be seen in Fig. 8. The benefits of
KNN rely on its ease of implementation, the lack of
parameters to fine-tune and the adaptability of the
model when new training data is added to the model.
The disadvantages lie in the fact that this model does
not scale well when adding extra dimensions to the
input data, and the possibility of over-fitting to training
data. The dimensionality problem does not affect this
classifier, due to the model only using DTW as an input
to the KNN algorithm, and this only has one metric[14].

Fig. 8. K-Nearest-Neighbours Visualisation[14].

Without any clear indication of what K-Value this
model would require to best perform, the model is
trained with the same training data for four K-Values:
3,5,7,9. These values have to be odd so that there is a
clear majority in the KNN voting.

Following the flowchart for testing the model (Fig.
A.3), the test audio is separated into periods, and then
checked if the number of acceptable periods is odd
due to a need for a no-tie in the voting stage of the
classifier. Once all the periods have been extracted from
the patient’s audio sample (as explained in more depth
in the previous section), the DTW algorithm is used

against all the entries of heart periods in the training set.
For a given K-Value, the KNN algorithm finds the K
minimum distances outputted from the DTW algorithm.
For this cardiac period, a KNN classification is given
by the voting of the nearest neighbour classes. Once all
periods have been classified as either ”Normal-Absent”
or otherwise, there is a vote between all of the periods
(hence the odd number) for the whole patient audio.
After this is done for all K-Values and sexes (5 times
to gain an average), the efficacy of the model can be
examined.

III. RESULTS

Added in the appendix, there are the full results shown
in Fig. A.4, A.5, A.6, A.7, and A.8, but there is a
summary of the overall performance.

After running the model 5 times for each of the
4 K-Values and the two sexes, the average accuracy,
precision, recall and F1-Score of the model can be seen
in Fig. 9. The separated averages for K-Values for each
of the sexes can be seen in Fig. 10, and 11.

• The APRF scores for each sex/run/N

Fig. 9. Average Results for all tests.

Fig. 10. Average Test Results for Female Patients per K-Value.

IV. EVALUATION

A. Analysis

This model is not a good classifier, and it seems it
would have a similar effectiveness to comparing: the
Root Mean Square Energy, Zero Crossing Rate, and
Signal to Noise Ratio. Delving into the metrics further,
separating the sexes and K-Values (as seen in Fig. 10,



6

Fig. 11. Average Test Results for Male Patients per K-Value.

and 11), the K-value and different sex data makes a
marginal change to the model.

To be used as a preliminary screening with the knowl-
edge of its performance, using this current model may be
unethical. Furthermore, the recall of the model is shown
to be quite poor, and therefore not suitable for clinical
contexts whatsoever, as it will misdiagnose those with
potential underlying heart problems.

This shouldn’t mean, however, that Dynamic Time
Warping should not be used in the classification of heart
murmurs, as there may be some improvements to be
made with the cardiac period separation. As seen in
Fig. 12, a lot of the periods extracted appear to be of
single cardiac periods. Nonetheless, the cardiac sample
in Fig. 13 extracted is two separate periods in sequence.
Comparing this to a one-period audio file would have
a great distance using DTW. Similarly, the noisiness of
some of the extracted periods, such as Fig. 14, could be
the source of completely incoherent results.

Fig. 12. Spectral flux, and extracted normal cardiac period from
patient audio.

Some possible reasons for this could include, the cut-
off frequency of the preliminary low-pass filter being too

Fig. 13. Spectral flux, and extracted double-cardiac period from
patient audio.

Fig. 14. Spectral flux, and extracted noisy segment from patient
audio.

low, smoothing out the heart S1 and S2 sounds, making
them indistinguishable from the noise of the signal.
Although, this could introduce a trade-off between the
strength of the S1 and S2 sounds, and the energy of the
higher noise now being included in the signal. Another
reason may be that not all patients are at resting heart
rate during a clinical procedure, due to stress or anxiety.
This could be mitigated, by finding the average heart
rate for the period and segmenting the audio into cardiac
periods related to the patient’s heart rate in the recording,
rather than the excepted resting heart rates depending on
age. The down-sampling could also play a big role in
identifying the murmurs, however, this was necessary for
the speed of the model. A final reason could be that using
dynamic time warping as the only KNN input variable is
not the ideal way of categorising this overly noisy data.
Using metrics of these cardiac periods could yield better
results when used in conjunction with the DTW.
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Looking at other methods in use for categorising heart
murmurs, will be incredibly beneficial, and shed light on
the potential shortcomings of this model in its current
state.

B. Comparison to Other Methods

Sticking with the use of DTW and KNN, another
method of classifying and segmenting the audio signal
into cardiac periods could be done by using open-source
algorithms[16]. There are four mentioned models for the
segmentation of heart periods in this paper: Envelope
(onset), Feature-Based, Machine Learning, and Hidden-
Markov model. With the Hidden-Markov model being
the state-of-the-art method.

In this paper, the model used to classify the abnormal
from the normal heart recordings is based on feature
extraction inputted into a logistic regression classifier. A
benefit of using a logistic regression algorithm is the
white-box nature, where the operator can extract the
equation of how the model equates the results and make
evaluations based on their predictions of which features
would be the most beneficial[16].

Another method, described in [17], uses DEEP learn-
ing to classify the murmur. Although this has much better
success rates of classification than the model proposed
in this report and the previous logistic regression model,
this type of model requires a large dataset and is also
a black box, so the inner workings cannot be dissected
with ease.

V. CONCLUSION

This report has given context to why heart murmur
classification in children is important, not only for the
health of the patients but for the time effectiveness of
overly strained health services. Although this model has
proved to be ineffective in its current state, the concept is
not something to give up altogether, and in the future, the
model will be expanded to increase its accuracy. Whether
these improvements will lie in the audio preparation of
the sample, the structure and feature selection for the
classifier, or the classifying algorithm, they will only be
implemented when more research and experimentation
are conducted.
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APPENDIX

Fig. A.1. Dataset preparation flow chart.

Fig. A.2. Audio preparation flow chart.
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Fig. A.3. Testing model flow chart.
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Fig. A.4. Average results for of datasets for each sex and K-Value.
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Fig. A.5. Dataset information for Female Runs of Model.
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Fig. A.6. Dataset information for Male Runs of Model.
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Fig. A.7. Testing information for Female Runs of Model.
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Fig. A.8. Testing information for Male Runs of Model.


